P-АДИК РАЦИОНАЛЬНЫЕ ДИНАМИЧЕСКИЕ СИСТЕМЫ

Xамидов Шерали Ширинович Преподаватель Бухарского государственного педагогического института

Авторы

  • Xамидов Шерали Ширинович TerDU

Ключевые слова:

Рациональные динамические системы; фиксированная точка; инвариантное множество; Диск Зигеля; Множество p-адических комплексных чисел.

Аннотация

В работе использованы методы математического анализа, комплексного анализа и p-адического анализа. Изучение теории динамических систем с дискретным временем в области p-адических комплексных чисел и их реализация:
• определить неподвижные точки a/(x^2+1) -рациональной функции;
• Реализация динамики, соответствующей характеристикам фиксированной точки, когда фиксированная точка единственно;
• найти периодические точки при отсутствии фиксированной точки и реализовывать динамику в соответствии с природой этих периодических точек.
Результаты работы по развитию теории дискретных динамических систем для класса p-адических рациональных функций, имеют практические применение в рассмотрения проблем телекоммуникаций и возможностью их использования в цифровом анализе и криптографии. Основные результаты имеют теоретический характер. Они используются в смежных областей математики и динамики биологических и физических систем.

Библиографические ссылки

Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.

Albeverio S., Tirozzi B., Khrennikov A.Yu., S. de Shmedt, p-adic dynamical systems. Theoret. and Math. Phys. 114(3) (1998), 276–287.

Anashin V., Khrennikov A., Applied Algebraic Dynamics, de Gruyter Expositions in Mathematics vol 49, Walter de Gruyter (Berlin - New York), 2009. On a non-linear p-adic dynamical system 159

Khrennikov A.Yu., Oleschko K., M. de Jes´us Correa L´opez, Applications of padic numbers: from physics to geology. Advances in non-Archimedean analysis, 121–131, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.

Koblitz N., p-adic numbers, p-adic analysis and zeta-function Springer, Berlin, 1977.

Mukhamedov F., Khakimov O., Chaotic behaviour of the p-adic Potts-Bethe mapping, Disc. Cont. Dyn. Syst. 38 (2018), 231–245.

Peitgen H.-O., Jungers H., Saupe D., Chaos Fractals, Springer, Heidelberg-New York, 1992.

Rozikov U.A., What are p-adic numbers? What are they used for? Asia Pac. Math.

Newsl. 3(4) (2013), 1–6.

Rozikov U.A., Sattarov I.A., On a non-linear p-adic dynamical system. p-Adic Numbers, Ultrametric Analysis and Applications, 6(1) (2014), 53–64.

Rozikov U.A., Sattarov I.A., p-adic dynamical systems of (2, 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260–270.

Rozikov U.A., Sattarov I.A., Yam S., p-adic dynamical systems of the function . p-Adic Numbers Ultrametric Anal. Appl. 11(1) (2019), 77–87.

Rozikov U.A., Sattarov I.A., Dynamical systems of the p-adic (2, 2)-rational functions with two fixed points. Results in Mathematics, 75(3) (2020), 37 pp.

Vladimirov V.S., Volovich I.V., Zelenov E.I., p-Adic Analysis and Mathematical Physics (Series Sov. and East Eur. Math., Vol. 10), World Scientific, River Edge, N. J. (1994)

Albeverio S., Rozikov U.A., Sattarov I.A., p-adic (2, 1)-rational dynamical systems. Jour. Math. Anal. Appl. 398(2) (2013), 553–566.

Koblitz N., p-adic numbers, p-adic analysis and zeta-function. Springer, Berlin, 1977.

S. Albeverio, B. Tirozzi, A.Yu. Khrennikov, S. de Shmedt, p-adic dynamical systems. Theoret. and Math. Phys. 114(3) (1998), 276–287.

A.Yu. Khrennikov, K. Oleschko, M. de Jes´ p-adic numbers: from physics to geology. Advances in non-Archimedean analysis, 121–131, Contemp. Math., 665, Amer. Math. Soc., Providence, RI, 2016.

H.-O.Peitgen, H.Jungers and D.Saupe, Chaos Fractals, Springer, Heidelberg-New York, 1992.

U.A. Rozikov, What are p-adic numbers? What are they used for? Asia Pac. Math. Newsl. 3(4) (2013), 1–6.

U.A. Rozikov, I.A. Sattarov. On a non-linear p-adic dynamical system. p-Adic Numbers, Ultrametric Analysis and Applications, 6(1) (2014), 53–64.

U.A. Rozikov, I.A. Sattarov. p-adic dynamical systems of (2, 2)-rational functions with unique fixed point. Chaos, Solitons and Fractals, 105 (2017), 260–270.

U.A. Rozikov, I.A. Sattarov. Dynamical systems of the p-adic (2, 2)-rational functions with two fixed points. Results in Mathematics, 75(3) (2020), 37 pp.

U.A. Rozikov, I.A. Sattarov, S. Yam, p-adic dynamical systems of the function p-Adic Numbers Ultrametric Anal. Appl. 11(1) (2019), 77–87.

V. S. Vladimirov, I. V. Volovich, and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (Series Sov. and East Eur. Math., Vol. 10), World Scientific, River Edge, N. J. (1994).

Albeverio, S., Rozikov, U.A., Sattarov, I.A.: p-adic (2, 1)-rational dynamical sys-tems. J. Math. Anal. Appl. 398(2), 553–566 (2013)

Albeverio, S., Kloeden, P.E., Khrennikov, A.: Human memory as a p-adic dy-namical system. Theor. Math. Phys. 114(3), 1414–1422 (1998)

Albeverio, S., Khrennikov, A., Tirozzi, B., De Smedt, S.: p-adic dynamical sys-tems.

Theor. Math. Phys. 114(3), 276–287 (1998)

Anashin, V.S.: Ergodic transformations in the space of p-adic integers. In: p-Adic Mathematical Physics, 3–24, AIP Conference Proceedings, vol. 826. American Institute of Physics, Melville, NY (2006)

Anashin, V.S., Khrennikov, A.Y.: Applied Algebraic Dynamics. de Gruyter Ex-positions in Mathematics, vol. 49. Walter de Gruyter, Berlin (2009)

Anashin, V.S.: Non-Archimedean ergodic theory and pseudorandom generators. Comput. J. 53(4), 370–392 (2010)

Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Characterization of ergodicity of p-adic dynamical systems by using van der Put basis. Dokl. Math. 83(3), 306–308 (2011)

Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Ergodicity of dynamical systems on 2-adic spheres. Dokl. Math. 86(3), 843–845 (2012)

Anashin, V.S., Khrennikov, A.Y., Yurova, E.I.: Ergodicity criteria for non-expanding transformations of 2-adic spheres. Discrete Contin. Dyn. Syst. 34(2), 367–377 (2014)

Call, G., Silverman, J.: Canonical height on varieties with morphisms. Compos. Math. 89, 163–205 (1993)

Diao, H., Silva, C.E.: Digraph representations of rational functions over the p-adic numbers. p-Adic Numbers Ultrametr. Anal. Appl. 3(1), 23–38 (2011)

Escassut, A.: Analytic Elements in p-Adic Analysis. World Scientific, River Edge, NJ (1995)

Fan, A.-H., Liao, L.-M.: On minimal decomposition of p-adic polynomial dy-namical systems. Adv. Math. 228, 2116–2144 (2011)

Fan, A., Fan, S., Liao, L., Wang, Y.: On minimal decomposition of p-adic ho-mographic dynamical systems. Adv. Math. 257, 92–135 (2014)

Gouvea, F.Q.: p-Adic Numbers. An Introduction, 2nd edn. Springer, Berlin (1997)

Khrennikov, A.Y., Nilsson, M.: p-Adic Deterministic and Random Dynamics.

Mathematics Applications, vol. 574. Kluwer, Dordrecht (2004)

Khrennikov, A.Y.: p-adic description of chaos. In: Alfinito, E., Boti, M. (eds.) Nonlinear Physics: Theory and Experiment, pp. 177–184. WSP, Singapore (1996)

Khamraev, M., Mukhamedov, F.M.: On a class of rational p-adic dynamical systems. J. Math. Anal. Appl. 315(1), 76–89 (2006)

Koblitz, N.: p-Adic Numbers, p-Adic Analysis and Zeta-Function. Springer, Berlin (1977)

Memi´c, N.: Characterization of ergodic rational functions on the set 2-adic units. Int. J. Number Theory 13, 1119–1128 (2017)

Mukhamedov, F.M., Khakimov, O.N.: On metric properties of unconventional limit sets of contractive non-Archimedean dynamical systems. Dyn. Syst. 31(4), 506–524 (2016)

Mukhamedov, F.M., Khakimov, O.N.: Phase transition and chaos: p-adic Potts model on a Cayley tree. Chaos Solitons Fractals 87, 190–196 (2016)

Mukhamedov, F.M.: On the chaotic behavior of cubic p-adic dynamical systems. Math.

Notes 83(3), 428–431 (2008)

Mukhamedov, F.M., Rozikov, U.A.: On rational p-adic dynamical systems. Methods Funct. Anal. Topol. 10(2), 21–31 (2004) 49. Mukhamedov, F.M., Rozikov, U.A.: A plynomial p-adic dynamical system. Theor. Math. Phys. 170(3), 376–383 (2012)

Mukhamedov, F.M., Mendes, J.F.F.: On the chaotic behavior of a generalized logistic p-adic dynamical system. J. Differ. Equ. 243, 125–145 (2007)

Peitgen, H.-O., Jungers, H., Saupe, D.: Chaos Fractals. Springer, Heidelberg (1992)

Robert, A.M.: A Course of p-Adic Analysis (Graduate Texts in Mathematics), vol. 198. Springer, New York (2000)

Rozikov, U.A., Khakimov, O.N.: Description of all translation-invariant p-adic Gibbs measures for the Potts model on a Cayley tree. Markov Process. Relat. Fields 21(1), 177–204 (2015)

Rozikov, U.A., Sattarov, I.A.: On a non-linear p-adic dynamical system. p-Adic Numbers Ultrametr. Anal. Appl. 6(1), 53–64 (2014)

Rozikov, U.A., Sattarov, I.A.: p-adic dynamical systems of (2, 2)-rational func-tions with unique fixed point. Chaos Solitons Fractals 105, 260–270 (2017)

Rozikov, U.A., Sattarov, I.A., Yam, S.: p-adic dynamical systems of the function ax/x2 + a p-Adic Numbers Ultrametr. Anal. Appl. 11(1), 77–87 (2019)

Sattarov, I.A.: p-adic (3, 2)-rational dynamical systems. p-Adic Numbers Ultra- metr. Anal. Appl. 7(1), 39–55 (2015)

Walters, P.: An Introduction to Ergodic Theory. Springer, Berlin (1982)

Загрузки

Опубликован

2025-03-03