HEAT TRANSFER IN NETWORK STRUCTURES: A METRIC GRAPHIC APPROACH
Xashimova Feruza Saidovna, Senior teacher of the Department of «General Physics» of the Navoi State University of Mining and Technology, Khusanov Zafar Jurakulovich. doctor of philosophy in Pedagogical Sciences (Phd) Navoi State University of mining and Technology associate professor of the Department of General Physics
Keywords:
physics, science teaching, branched structures, heat generation, metric graphs, heat fow, learning efciencyAbstract
The article deals with issues related to heat removal in branched structures: an approach based on metric graphs. The problem of heat distribution in network systems and networks is considered on the basis of a model described by the heat transfer equation in metric graphs. With the help of accurate analytical solutions, the temperature state and changes in the heat fow in each network are calculated. An extension of the study for a nonlinear regime using a nonlinear heat equation in metric graphs is considered. It turned out that in the nonlinear regime it is more intense than in the linear one.
References
T.Kottos va U.Smilanski, Ann. Phys., 1999.
Oleg Xul va b., Phys. Red. E 69, 2004y.
P.Kuchment, Волны в случайных средах, 14 с107 (2004).
S.Gnutzmann и U.Smilansky, Adv.Phys. 55 527 (2006).
N. Gol’dman va P. Gaspar, Phys. Red. V 77, 024302 (2008y.).
P.Eksner va X.Kovarik, Квантовые волноводы. (Springer, 2015).
L. Pauling, J. Chem. Phys. 4 673 (1936).
K. Ruedenberg и C.W.Scherr, J. Chem. phys. 21 1565 (1953).
С. Александер, Phys. Ред. В 27 1541 (1985).
P.Exner, P.Seba, P.Stovicek, J. Phys. А: Matematika. Gen. 1988.
V.Kostrikin va R.Shrader. J. Phys. А: Математика. Ген. 1999.
J.Bolte и J.Harrison, J. Phys. А: Математика. Ген. 2003.
S.Gnutzmann, J.P.Keating, F.Piotet, Ann.Phys., 2010.
J.Harrison, T.Weyand и K.Kirsten, J. Math. физ. 2016.
Z.Sobirov, D.Matrasulov, K.Sabirov, S.Savada, K.Nakamura, Phys. (2010).