TALABALАRNI MANTIQIY FIKRLASH QOBILIYATLARINI SHAKLLANTIRISH
Ochilova Zamira Shukrullo qizi Buxoro davlat universiteti tayanch doktoranti
Ключевые слова:
matematika, mantiqiy fikrlash, matnli masala, Biologik modellar, Epidemiyaning matematik modeli.Аннотация
Bugungi kunga kelib ta’limni tashkil etishga qo‘yiladigan talablardan biri bu oritqcha ruhiy va jismoniy kuch sarf etmay, qisqa vaqt ichida yuqori natijalarga erishishdan iboratdir. Qisqa vaqt orasida muayyan nazariy bilimlarni o‘quvchilarga yetkazib berish, ularda malum faoliyat yuzasidan ko‘nikma va malakalarni hosil qilish shuningdek, o‘quvchilarning faoliyatini nazorat qilish, ular tomonidan egallangan bilim, ko‘nikma va malakalar darajasini baholash uchun o‘qituvchilardan yuksak pedagogik mahorat hamda talim jarayoniga nisbatan yangicha yondashuvni talab etadi. Nimaga aynan qisqa vaqt? Chunki o‘quvchi diqqatini juda uzoq vaqt davomida darsga qarata olmaydi, tezda zerikib, tezda chalg‘ib qoladi. Shu sababli o‘qituvchi dastlab o‘quvchi diqqatini o‘ziga jalb qila olishi, qisqa muddat ichida mavzuning mazmun mohiyatini o‘quvchiga tushuntirib bera olishi kerak.Ushbu maqolada matematika darslarida talabalarni mantiqiy fikrlash qobiliyatlarini shakllantirish yo’llari bayon etilgan. Biologik modellar hamda Epidemiyaning matematik modeli tuzulib, misollar yordamida bajarib ko‘rsatilgan.
Библиографические ссылки
Educating teachers of science, mathematics, and technology : new practices for the new millennium / Committee on Science and Mathematics. Copyright 2001 by the National Academy of Sciences. Constitution Avenue, N.W. Washington
Djurayev R.X va boshqalar. Pedagogik atamalar lug‘ati. –T.: “Fan nashriyoti”, 2008 yil. – 94-bet
A. Sh. Rashidov Matematika darslarida tа’limning shахsgа yo ‘nаltirilgаn tехnоlоgiyasi. Центр научных публикаций. 2021 yil. 3-son. 68-72 bet
A.Sh. Rashidov Ijtimoiy-gumanitar ta’lim yo’nalishi talabalari uchun matematik fanlar bo’yicha amaliy mashg’ulotlarni o’tkazish. Science and Education №9. C 283-291
О.O.Халлоқова. А.Рашидов Пороговое собственное значение модели Фридрихса. Молодой ученый, 2015 №15. C. 1-3
A. Sh. Rashidov Interaktivnyye metody pri izuchenii temy «Opredelennyy integral i yego prilozheniya». Nauchnyye issledovaniya. № 34:3. C 21-24
A. Sh. Rashidov Yoshlar intellektual kamolotida ijodiy tafakkur va kreativlikning oʻrni. Pedagogik mahorat 2021 yil №7. 114-116 bet.
Durdiev D.K, Nuriddinov J.Z., On investigation of the inverse problem for a parabolic integrodifferential equation with a variable coefficient of thermal Conductivity // Vestnik Udmurtskogo Universiteta. 2020, vol. 30, issue 4, pp. 572-584
Durdiev D.K, Nuriddinov J.Z., Determination of a Multidimensional Kernel in Some Parabolic Integro- differential Equation // Journal of Siberian Federal University. Mathematics physics 2021, 14(1), 117-127.
Nuriddinov J.Z., The problem of determining the kernel of the integro-differential heat equation with a variable coefficient // Uzbek Mathematical Journal 1 (2020) p. 103-110.
Durdiev D.K, Nuriddinov J.Z., Kernel determining problem in the integro-differential heat equation with a variable thermal conductivity // Bulletin of the Institute of Mathematics. 3(2020) p.15-26.
Нуриддинов Ж.З., Эквивалентная система интегральных уравнений для одной обратной задачи для интегро-дифференциального уравнения теплопроводности, Научный Вестник Бухарского государственного университета, №4 (2019), ст. 64-68.
Durdiev D.K, Nuriddinov J.Z., Nuriddinov, Inverse problem for integro-differential heat equation with a variable coefficient of thermal conductivity, Scientific reports of Bukhara State University, 2020, 5(81) p. 3-12.